罗姆第4代SiC MOSFET在电动汽车电控系统中的应用及其优势
日期:2022-03-08
- 引言
- 罗姆第4代SiC MOSFET应用于“三合一”电桥
罗姆于2020年完成开发的第4代SiC MOSFET,是在不牺牲短路耐受时间的情况下实现业内超低导通电阻的产品。该产品用于车载主驱逆变器时,效率更高,与使用IGBT时相比,效率显著提升,因此非常有助于延长电动汽车的续航里程,并减少电池使用量,降低电动汽车的成本。
图 | 第4代SiC MOSFET和IGBT的逆变器效率比较
- 罗姆第4代SiC MOSFET的独特优势
对比罗姆的第3代SiC MOSFET产品,第4代SiC MOSFET具有导通电阻更低的特点。根据测试结果显示,在芯片尺寸相同且在不牺牲短路耐受时间的前提下,罗姆采用改进的双沟槽结构,使得MOSFET的导通电阻降低了约40%,传导损耗相应降低。此外,从RDS(on)与VGS的关系图中,我们可以发现第4代SiC MOSFET在栅极电压处于+15V和+18V之间时具有更平坦的梯度,这意味着第4代SiC MOSFET的驱动电压范围可拓展至15V-18V。
图 | 第3代和第4代SiC MOSFET导通电阻测试结果示意图
同时,第4代SiC MOSFET还改善了开关性能。通常,为了满足更大电流和更低导通电阻的需求,MOSFET存在芯片面积增大、寄生电容增加的趋势,因而存在无法充分发挥碳化硅原有的高速开关特性的课题。第4代SiC MOSFET,通过大幅降低栅漏电容(Cgd),成功地使开关损耗比以往产品降低约50%。
图 | 第3代和第4代SiC MOSFET开关损耗测试结果示意图
此外,罗姆还对第4代SiC MOSFET进行了电容比的优化,大大提高了栅极和漏极之间的电容(CGD)与栅极和源极之间的电容(CGS)之比,从而减少了寄生电容的影响。比如,可以减小在半桥中一个快速开关的SiC MOSFET施加在另一个SiC MOSFET上的高速电压瞬变(dVDS/dt)对栅源电压VGS的影响。这将降低由正VGS尖峰引起的SiC MOSFET意外寄生导通的可能性,以及可能损坏SiC MOSFET的负VGS尖峰出现的可能性。
- 支持工具
SiC介绍页面网址: http://www.rohm.com.cn/products/sic-power-devices
第4代SiC MOSFET的支持内容:
・概要介绍视频、产品视频
・应用指南(产品概要和评估信息、主驱逆变器、车载充电器、SMPS)
・设计模型(SPICE模型、PLECS模型、封装和Foot Print等的3D CAD数据)
・主要应用中的仿真电路(ROHM Solution Simulator)
・评估板信息 ※如需购买评估板,请联系罗姆的销售部门。
- 总结
推荐行业新闻更多